

NIAGARA SUMMIT

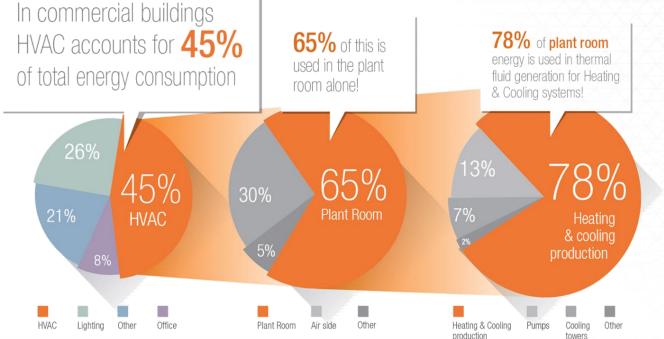
CONNECTING THE WORLD

Niagara Case Studies

Chirayu Shah General Manger Conserve It

Advanced CPCOS

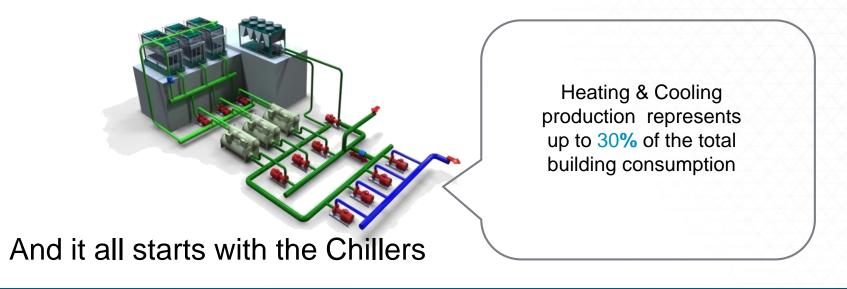
Chiller Plant Control and Optimisation as an Appliance


Overview

- Why do we need a Central Plant Control and Optimization System (CPCOS)
- What does a Central Plant Control and Optimization System need to do
- What doesn't a Central Plant Control and Optimization System need to do
- What are the key features of a Central Plant and Optimization System
- Why does a Chiller Manufacturer want their own Central Plant and Optimization System
- What does a Central Plant Control and Optimization System mean for
 - Property Management companies
 - Facility Managers
 - Energy Managers
 - Mechanical contractors
 - Controls technicians and contractors

Why do we need a Central Plant Control and Optimization System

Source US Department Of Energy (DOE). Office building environment, DHW


minimal requirement provided by the main boilers through a heat exchanger. Boiler plant and pumping assumed to be a separate system, In some instances heating and cooling may be required simultaneously.

TRIDIUÂ

Why do we need a Central Plant Control and Optimization System

• The Plant Room is energy intensive and hides a huge savings potential

- Efficient components can only take building efficiency so far, a system approach is needed to maximize efficiency.
- Plant Optimization recognises that the whole is greater than the sum of the parts and allows us to reach and <u>sustain</u> a high-performance, high-efficiency output Or put in a simple way
- Lowest cost of production of each and every ton of chilled water

And its not easy to do

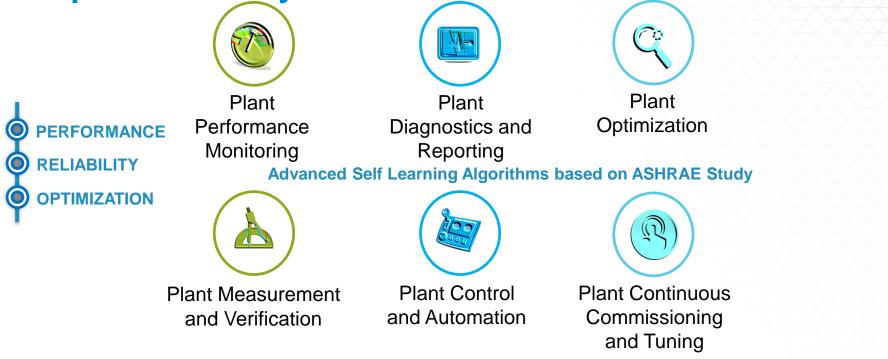
- Its not just switching on the chillers and the supporting pumps and tower fans
- Its more than staging chillers up and down to maintain a chilled water setpoint
- Its more than just driving down the condenser water temperature
- And its only now possible because of the data that is available and the power of modern software platforms

TRIDIUÂ

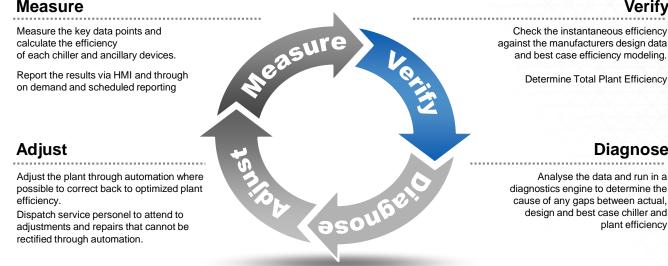
Central Plant Control and Optimization System

What doesn't a Central Plant Control and Optimization System need to do

AHU Control System


Lighting Control System

What are the key features of a Central Plant and Optimization System



What are the key features of a Central Plant and **Optimization System**

The PlantPRO / MultiPRO Optimization Model

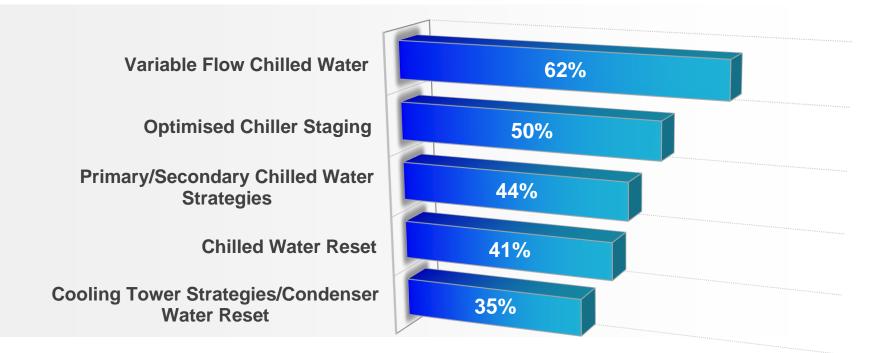
Check the instantaneous efficiency against the manufacturers design data and best case efficiency modeling.

Diagnose

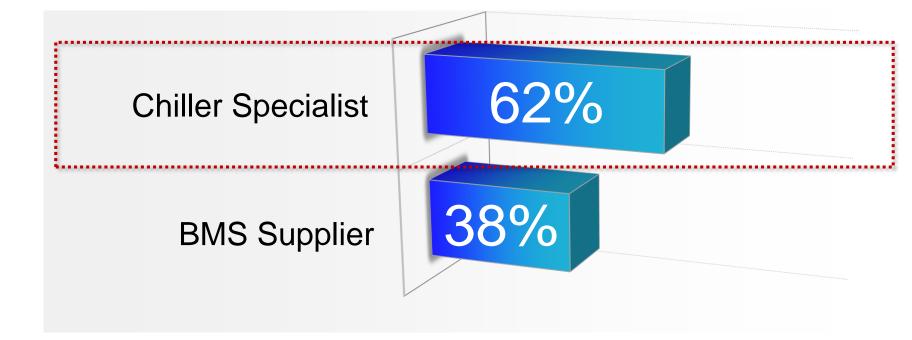
Analyse the data and run in a diagnostics engine to determine the cause of any gaps between actual, design and best case chiller and plant efficiency

In 2012 a Worldwide "Automation to Optimization" Survey was conducted

There were two key questions


Do you prefer CPO/CPA by a Chiller Specialist or BMS Supplier?

What are the most Important Optimization Strategies?



Important Optimization Strategies

Source: JCI/Airah Feb 2013

Consultants Prefer CPA/CPO by

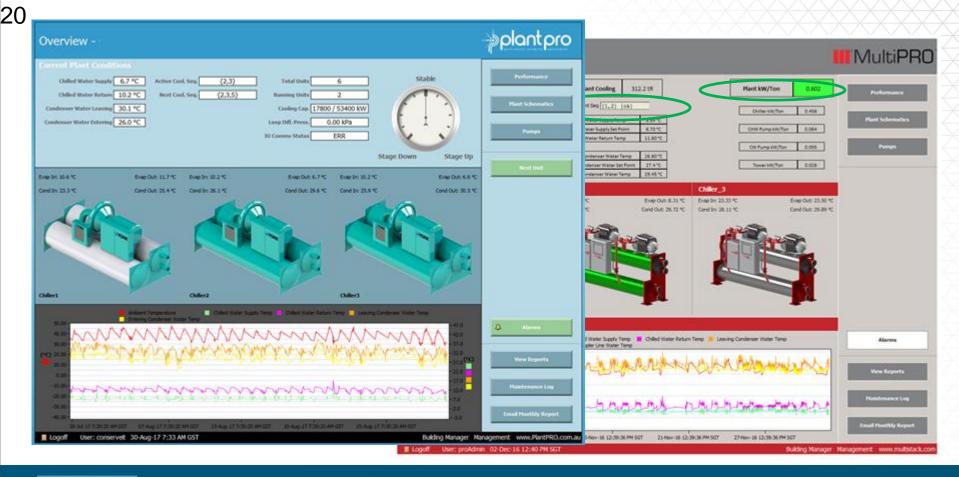
Why does a Chiller Manufacturer want their own Central Plant Control and Optimization System

- Manufacturers know their Chillers best, so they know how to control them best
- Helps them monitor the performance of their Chillers real-time and make sure they run within operational limits
- Helps Manufactures' Reps with DLP and Warranty Claims
- Proves to consultants their machines provide efficiencies as advertised
- PRO kW/Ton Shows in Real Time Where Your System is Capable of Operating in kW/Ton and \$ Vs. Where it is Actually Operating

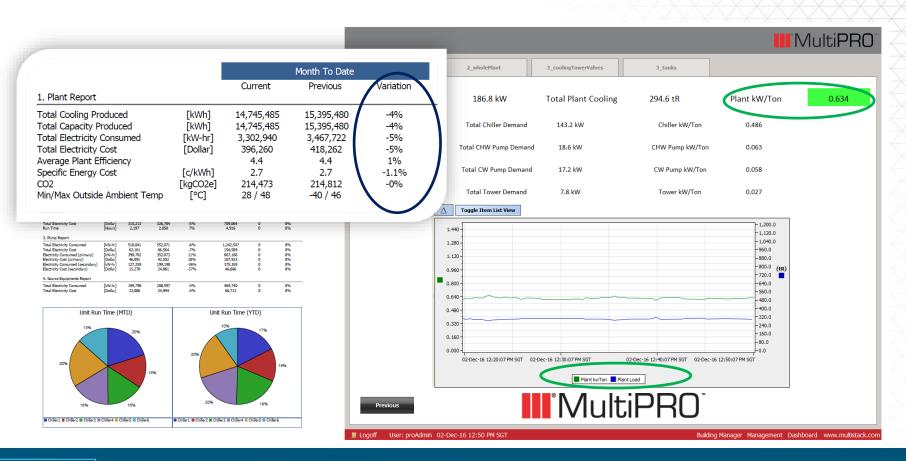
- Property Management Companies :
 - Generally manage a portfolio of properties containing a number of large buildings that have large chiller plants.
 - Looking for a standardized way to manage their energy consumption in the HVAC systems
 - They want to benchmark their properties energy consumption against one another
 - PlantPRO / MultiPRO allows these organizations to deploy a standard product with the same look and feel across all of their assets and also compare their buildings energy consumption
 - If they need to rotate Facility Managers through their portfolio of buildings that they will be comfortable working with PlantPRO / MultiPRO due to the same functionality and look and feel across all installations.

TRIDIUM 17

18															(XXXXX)
	Performan	erformance -													
						Perform	Performance -					MultiPRO			
	Performance						Perform	ance							
	Plant COP		4.81	3	1 1	1 1 1	Plant NW/	Ion	0.63	62	4	0.6	4	1	Overview
	Total Cooling Lo	sed.	10301.3 kW 19.29 %		p 49	60 80	Total Cool	ing Load	397.06 tR	20	49	60	60	100	Unit Summary
	Total Power Abs	sorbed	2141.65 kW 15.59 %		0 40	40 80	Total Powe		249.31 kW	30	9	é	80	100	
	Ambient Temper	rature	31.06 °C Total Plant R	tun Time 16	66 hours	Plant CO2 Emissions	Ambient T	emperature	04.01 °F		8509 hours			0.0 kgCO2e	Cooling Tower Summary
	Specific Cooling	Cost	2.49 c/kWh Date of Last	Reset 30	Aug-17 8:54 AM	Current Time		soling Cost	9.41 c/tR-hr	Date of Last Reset	23-5ep-17 2:02 AM			25-5ep-17 11:17 AM	Plant Charts
	Units Summary-						Units Su	mmary							Part Courts
	Unit Name	Power	Cool Load Heat Load Hig	ph T. Load	urrent Performanc	1									Chart Builder
	Orler1	0.00 kw	0.00 kw		0.00 C	2 2 9	t Orler_1	106.24 kW	298.30 99.		kill/Ton 0.54	ų	0.4 0.5	он 1	
	Onlier2	838.97 kW	\$123.64 kw		OP 6.11	2 4 6	Other_2	0.00 kw	0.00 K		kst/Ton 0.00	42	0,4 0,6	0,8 1	Next Pump
	Chiler 3	882.11 kW	5177.62 kw	c	OP 5.87	3 4 4	Chier_3	98.74 kW	198.96 IR		kiti/Ton 0.50	ę.	9 9	0,4 I	
		_					Pump Su	immary			Cooling Tov	ver Summar	~		
	Pump Summary-		Present.		Cooling Tower Summ		Dura Nat		Domand			Incurre			
	Pump Name	Frequency	Demand		System Name	Frequency Deman	2 Off Rep.		7.53 kW		CoolingWaterLoop		13.01 kW		
	ExapPump1	32.09 Hz	62.71 kW		cirk.oop_Ch1_2_3	37.50 Hz 79.39 kN	OfW_Pump_3		0.00 kW						Alarms
	ExapPump2	0.00 Hz	0.00 kw		CHLOOD_CH4_5_6	0.00 Hz 0.00 kW									
	ExapPump3	32.07 Hz	62.96 kW				OHW_Pump_	3 36.80 Hz	7.02 kW						View Reports
	(cooling) d yields the e	livided by k energy-effi	nance (COP): Chiller W input (electric pov ciency ratio (EER). <i>H</i>	wer). Mult	iplying the C	OP by 3.412	divide			as efficiency, buuced, or kilowat					Haintenance Log Email Hostbly Report
							I Logoff	User: proAdminUS	25-Sep-17 9:19	AM SGT				Building Manage	er Management www.multistack.com



- Facility Managers :
 - Are set tough KPIs while managing their buildings.
 - They want to know that their chiller plant is being constantly optimized and running at peak performance.
 - They also want to be able to do basic operations themselves without having to be versed in extensive technical details of chiller plant control and optimization can be enough to challenge even the most experienced plant engineers.
 - PlantPRO / MultiPRO delivers for Facility Managers by doing all of this as a suite of standard features, right 'out-of-the-box'.



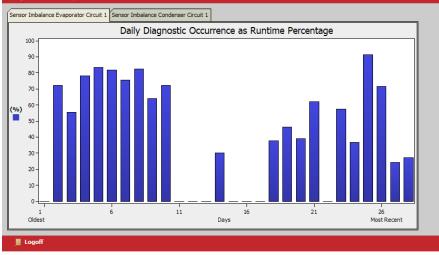
- Energy Managers :
 - Need to be able to track, monitor in real time and report on energy consumption and the changes in those consumption patterns.

- Ability for a user to construct custom charts out of any data point we log and then download this data in its raw form as CSV data or export the chart to a PDF.
- Energy Report to provide a comprehensive breakdown and analysis of energy consumption for all equipment in a chiller plant, month on month, year on year.

- Mechanical Contractors :
 - Are looking for a vendor independent product that allows them to demonstrate the valuable service they can offer to their clients.
 - PlantPRO / MultiPRO is "vendor independent". They work with machines and equipment from any manufacturer and do so seamlessly and in a standardised way.
 - It opens a wider selection of plant rooms that they can work on
 - Choose the best piece of equipment for the project rather than having to match the software and equipment.

TRIDIUM 24

24

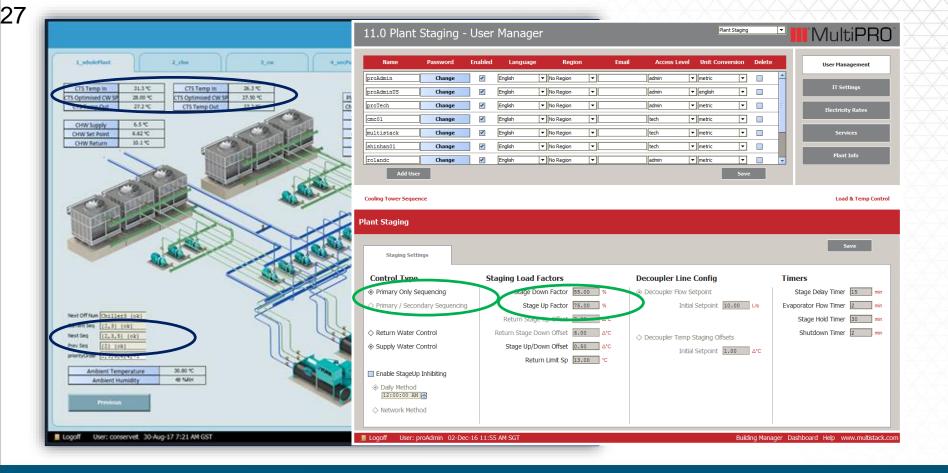

NS NIAGARA

THE WORLD

Diagnostic Summary				Current Alarms					
Diagnostics	Yesterday (%)	Last 7 Days (%)	Last 28 Days (%)	Timestamp	Name	State	Value		
Sensor Imbalance Evaporator Circuit 1	0.00	49.97	66.23	25-Nov-16 4:26 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	7.21 🔺		
Sensor Imbalance Condenser Circuit 1	0.00	24.58	24.06	25-Nov-16 4:39 PM AEDT	Chiller_1_calcDischargeAppTemp1	Unacked	3.96		
				25-Nov-16 4:42 PM AEDT	Chiller_1_sensorImbCondDiag1	Unacked	34.38		
				25-Nov-16 4:42 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	7.40		
				25-Nov-16 4:56 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	8.31		
				25-Nov-16 4:58 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	7.03		
				25-Nov-16 5:12 PM AEDT	Chiller_1_calcDischargeAppTemp1	Unacked	3.92		
				25-Nov-16 5:17 PM AEDT	Chiller_1_sensorImbCondDiag1	Unacked	34.40		
				25-Nov-16 5:17 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	7.51		
				25-Nov-16 5:27 PM AEDT	Chiller_1_chwHuntingDiag	Unacked	8.46		

Diagnostic Analysis

Type:	MpWaterCooledChiller
Manufactured:	2016
Capacity:	1,055.06 kW
Power:	294.62 kW
Condenser Cooling Fluid:	Water
Evaporator Cooling Fluid:	Water
Chiller Type:	High Pressure
Refrigerant:	r134a
Compressor Type:	Variable
Compressor Count:	2
Circuit Count:	1



- Controls Technicians and Contractors :
 - Have to deal with increased complexities in chiller plant controls & optimization installations.
 - They are looking for a way to deliver on all of this without the increased labor costs blowing out their project pricing and making them less competitive.

 System that can take care of all of these new situations and give the Controls Contractor the confidence that they can take on these projects and deliver them successfully.

200F

Regular analysis and reporting on efficiency allows for continuous improvement recommendations driving opportunities for VSD's, piping modifications, equipment upgrades, controls enhancements, BMS replacements and drive into the remainder of the building

Remote adjustment of plant operating parameters linked to a fully managed serv. model

Dispatch service personel to attend to adjustments and repairs that cannot be rectified through automation. Remote monitoring facilities provide recurring revenue streams

Fully managed options including intervention enhances revenue potential

Customers will always listen when we efficiency and cost of operation are the drivers

Maintenance Services tailored to each site to include programmed maintenance activities, recalibration services, database support, predictive maintenance, fully comprehensive models that remove the customers risk

TRIDIUM 28

Advanced Chiller Plant Control and Optimisation

Chirayu Shah General Manager Conserve It chirayu.shah@conserveit.com.au

